19 research outputs found

    IT 201-012: Information Design Techniques

    Get PDF

    HuSIS: A Dedicated Space for Studying Human Interactions

    Get PDF
    To support the study of effective human-surrogate interaction techniques and modalities, the Office of Naval Research awarded an equipment grant to support the development of a Human-Surrogate Interaction Space (HuSIS) at the University of Central Florida in the Institute for Simulation & Training. The HuSIS consists of a dedicated physical space, structures, and components designed specifically for carrying out controlled studies related to human-surrogate interactions. This article describes the motivation, design, and realization of the HuSIS and the benefits of the common data-collection and analysis framework developed for HuSIS research

    VALPROIC ACID INDUCES APOPTOSIS AND INCREASES CXCR7 EXPRESSION IN EPITHELIAL OVARIAN CANCER CELL LINE SKOV-3.

    Get PDF
    Background: The chemokine receptor, CXCR7 is described to play a biologically relevant role in tumor growth and spread. Recently, it was reported that CXCR7 overexpression is associated with an unfavorable prognosis and metastatis of epithelial ovarian cancer (EOC). Aware that, several reports indicated that Histone deacetylases (HDACs) regulate the expression and activity of many proteins involved in both cancer initiation and progression, the aim of this work, was to study the effect of the HDAC inhibitor valproic acid (VPA) on the expression of CXCR7 as well as its impact on survival function in the epithelial ovarian cell line (SKOV-3). Methods: cells were cultured with varying concentrations of VPA (1, 2, 3, 4, 5 and 10 mM) for different durations (0, 12 h, 24 h and 48 h). Cell survival was assessed by Neutral red assay and by colony counting which being stained with crystal violet. CXCR7 expression was determined at mRNA level using quantitative real-time PCR (qRT-PCR) or at the protein level using western blotting. Results: VPA reduces cell survival of SKOV-3 cancer cells. The inhibition effect of VPA was dose and time-dependent. Exposure to VPA at concentrations above 2 mM at 24 h resulted in an increase expression of CXCR7 at both the mRNA and protein levels . Conclusion: These observations provide, for the first time, a better insight into the epigenetic mechanisms involved in regulating CXCR7 expression in EOC and will open new avenues for evaluating drugs that specifically stimulate the apoptosis of EOC with minimal unwanted side effect

    VALPROIC ACID INDUCES APOPTOSIS AND INCREASES CXCR7 EXPRESSION IN EPITHELIAL OVARIAN CANCER CELL LINE SKOV-3.

    Get PDF
    Background: The chemokine receptor, CXCR7 is described to play a biologically relevant role in tumor growth and spread. Recently, it was reported that CXCR7 overexpression is associated with an unfavorable prognosis and metastatis of epithelial ovarian cancer (EOC). Aware that, several reports indicated that Histone deacetylases (HDACs) regulate the expression and activity of many proteins involved in both cancer initiation and progression, the aim of this work, was to study the effect of the HDAC inhibitor valproic acid (VPA) on the expression of CXCR7 as well as its impact on survival function in the epithelial ovarian cell line (SKOV-3). Methods: cells were cultured with varying concentrations of VPA (1, 2, 3, 4, 5 and 10 mM) for different durations (0, 12 h, 24 h and 48 h). Cell survival was assessed by Neutral red assay and by colony counting which being stained with crystal violet. CXCR7 expression was determined at mRNA level using quantitative real-time PCR (qRT-PCR) or at the protein level using western blotting. Results: VPA reduces cell survival of SKOV-3 cancer cells. The inhibition effect of VPA was dose and time-dependent. Exposure to VPA at concentrations above 2 mM at 24 h resulted in an increase expression of CXCR7 at both the mRNA and protein levels . Conclusion: These observations provide, for the first time, a better insight into the epigenetic mechanisms involved in regulating CXCR7 expression in EOC and will open new avenues for evaluating drugs that specifically stimulate the apoptosis of EOC with minimal unwanted side effect

    Optical See-Through Vs. Spatial Augmented Reality Simulators For Medical Applications

    No full text
    Currently healthcare practitioners use standardized patients, physical mannequins, and virtual patients as surrogates for real patients to provide a safe learning environment for students. Each of these simulators has different limitation that could be mitigated with various degrees of fidelity to represent medical cues. As we are exploring different ways to simulate a human patient and their effects on learning, we would like to compare the dynamic visuals between spatial augmented reality and a optical see-through augmented reality where a patient is rendered using the HoloLens and how that affects depth perception, task completion, and social presence

    Physical-Virtual Patient Simulators: Bringing Tangible Humanity to Simulated Patients

    No full text
    In lieu of real patients, healthcare educators frequently use simulated patients. Simulated patients can be realized in physical form, such as mannequins and trained human actors, or virtual form, such as via computer graphics presented on two-dimensional screens or head-mounted displays. Each of these alone has its strengths and weaknesses. I introduce a new class of physical-virtual patient (PVP) simulators that combine strengths of both forms by combining the flexibility and richness of virtual patients with tangible characteristics of a human-shaped physical form that can also exhibit a range of multi-sensory cues, including visual cues (e.g., capillary refill and facial expressions), auditory cues (e.g., verbal responses and heart sounds), and tactile cues (e.g., localized temperature and pulse). This novel combination of integrated capabilities can improve patient simulation outcomes. In my Ph.D. work I focus on three primary areas of related research. First, I describe the realization of the technology for PVPs and results from two user-studies to evaluate the importance of dynamic visuals and human-shaped physical form in terms of perception, behavior, cognition, emotions, and learning. Second, I present a general method to numerically evaluate the compatibility of any simulator-scenario pair in terms of importance and fidelity of cues. This method has the potential to make logistical, economic, and educational impacts on the choices of utilizing existing simulators. Finally, I describe a method for increasing human perception of simulated humans by exposing participants to the simulated human taking part in a short, engaging conversation prior to the simulation

    Cognitive And Touch Performance Effects Of Mismatched 3D Physical And Visual Perceptions

    No full text
    While research in the field of augmented reality (AR) has produced many innovative human-computer interaction techniques, some may produce physical and visual perceptions with unforeseen negative impacts on user performance. In a controlled human-subject study we investigated the effects of mismatched physical and visual perception on cognitive load and performance in an AR touching task by varying the physical fidelity (matching vs. non-matching physical shape) and visual mechanism (projector-based vs. HMD-based AR) of the representation. Participants touched visual targets on four corresponding physical-visual representations of a human head. We evaluated their performance in terms of touch accuracy, response time, and a cognitive load task requiring target size estimations during a concurrent (secondary) counting task. After each condition, participants completed questionnaires concerning mental, physical, and temporal demands; stress; frustration; and usability. Results indicated higher performance, lower cognitive load, and increased usability when participants touched a matching physical head-shaped surface and when visuals were provided by a projector from underneath

    Husis: A Dedicated Space For Studying Human Interactions

    No full text
    To support the study of effective human-surrogate interaction techniques and modalities, the Office of Naval Research awarded an equipment grant to support the development of a Human-Surrogate Interaction Space (HuSIS) at the University of Central Florida in the Institute for Simulation amp; Training. The HuSIS consists of a dedicated physical space, structures, and components designed specifically for carrying out controlled studies related to human-surrogate interactions. This article describes the motivation, design, and realization of the HuSIS and the benefits of the common data-collection and analysis framework developed for HuSIS research

    Touch Sensing On Non-Parametric Rear-Projection Surfaces: A Physical-Virtual Head For Hands-On Healthcare Training

    No full text
    We demonstrate a generalizable method for unified multitouch detection and response on a human head-shaped surface with a rear-projection animated 3D face. The method helps achieve hands-on touch-sensitive training with dynamic physical-virtual patient behavior. The method, which is generalizable to other non-parametric rear-projection surfaces, requires one or more infrared (IR) cameras, one or more projectors, IR light sources, and a rear-projection surface. IR light reflected off of human fingers is captured by cameras with matched IR pass filters, allowing for the localization of multiple finger touch events. These events are tightly coupled with the rendering system to produce auditory and visual responses on the animated face displayed using the projector(s), resulting in a responsive, interactive experience. We illustrate the applicability of our physical prototype in a medical training scenario
    corecore